Tree Inventory, Valuation and Construction Guidelines
99-157 E. 5th Avenue
San Mateo, CA

Submitted to:
Essex Property Trust. Inc.
c/o: Rachel Stoddard
925 E. Meadow Drive
Palo Alto, CA 94303

Prepared by:
Samuel Oakley
ISA Certified Arborist WE-9474A
ASCA Registered Consulting Arborist #556
Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>ii</td>
</tr>
<tr>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>Assignment</td>
<td>1</td>
</tr>
<tr>
<td>Method</td>
<td>1</td>
</tr>
<tr>
<td>Suitability for Preservation</td>
<td>2</td>
</tr>
<tr>
<td>Specific Construction Impacts</td>
<td>3</td>
</tr>
<tr>
<td>Construction Guidelines</td>
<td>4</td>
</tr>
<tr>
<td>Assumptions and Limiting Conditions</td>
<td>12</td>
</tr>
<tr>
<td>Exhibit 1 – Figures</td>
<td>13</td>
</tr>
<tr>
<td>Exhibit 2 – Inventory Matrix</td>
<td>22</td>
</tr>
<tr>
<td>Exhibit 3 – Inventory Map</td>
<td>23</td>
</tr>
</tbody>
</table>
Summary

The following report can be summarized as follows: The 99-157 E. 5th Avenue inventory consisted of twenty-five (25) trees, twenty-one (21) of which were six (6) inches or greater diameter at forty-eight (48) inches above grade (DBH). There were six (6) Heritage Trees surveyed.

Assignment

Arborwell was retained to inventory and valuate all trees on the property of 99-157 E. 5th Avenue in San Mateo, CA (see Figure 1 of Exhibit 1). An inventory of all trees was performed, identifying major vegetation having a diameter of six (6) inches or greater, as defined by Chapter 13.52.020 of the City of San Mateo’s municipal code. The site was inspected on October 12, 2015. At the time of inspection, a civil survey was performed. The tree assessment was completed for all trees on the aforementioned property.

Note that the recommendations in this report are based on visual inspection on the above-ground parts of the tree at the time of the site visit. No soil was removed for below-grade inspection and no aerial inspection was performed. Information in this letter may warrant further investigation as site conditions change over time.

Data collected per individual tree for the inventory are as follows: tag number and corresponding property location, scientific name, common name, diameter at forty-eight (48) inches above grade, location, condition, and any observational notes (see Exhibit 2). Each of the identified trees was then mapped using Geographic Information Systems (see Exhibit 3). In addition to the inventory and valuation, construction guidelines are provided in this report.

During the site visits, a total of forty-five (45) trees were quantified on-site; however, only twenty-five (25) are relevant to the project; twenty-one (21) individuals are considered major vegetation due to being equal to or greater than six (6) inches DBH. Of the 25 individuals observed on the property, there were six (6) species. Six (6) individuals are considered Heritage Trees per the Heritage Tree Ordinance.

Method

The specific tasks performed are as follows:

- Identify all trees on-site;
- identify the subject trees that are six (6) inches or greater at forty-eight (48) inches above grade;
- measure the diameter of the individual at forty-eight (48) inches above grade (DBH);
• determine the individual’s health and structural integrity and assign a condition rating;
• note any significant defects, health issues, or other observational notes;
• determine the tree’s location;
• acquire an image of the tree (see Exhibit 1);
• Determine the Species Value by means of the Western Chapter of the International Society of Arboriculture’s *Species Classification and Group Assignment* (2004)
• determine the LU Value of the tree based on the modified Council of Tree & Landscape Appraiser’s (CTLA) Trunk Formula Method adapted for the City of San Mateo;
• prepare a written report that presents findings and submit the report via email as a PDF document.

Appraise value of the tree was determined using a modified-CTLA Trunk Formula Method used by the City of San Mateo (see Exhibit 2 for the prepared Tree Evaluation Schedule), which is a hybrid appraising method derived from the Replacement Cost Method that extends the replacement costs to large diameter individuals. The final outcome is the derived LU Value. This method is accepted by the City of San Mateo for valuation purposes. The formula is as follows:

\[
\text{LU Value} = (\text{Species} \times \text{Condition} \times \text{Location}/0.35) \times (\text{Caliper Inches} \times 0.07 \times \text{Heritage Status})
\]

Of the data collected in the field, Health (0 - 5; 0 = extremely poor, 5 = excellent) and Structure (0 – 5; 0 = extremely poor, 5 = excellent) were combined to give each tree a Condition rating. The health of the tree is determined by the extent and size of foliage, the appearance of any abnormalities, and the overall health of the trunk and crown. The condition of the tree is determined by the structure of the tree and its general appearance. Health and condition are subjective and species-dependent.

Location of trees was assigned a unique value percent based on *The Guide for Plant Appraisal* and the associated worksheet published by Purdue University Cooperative Extension Service. Species Class was assigned a unique value based on the *San Mateo Species Classification Schedule*.

Suitability for Preservation

Each of the Protected Trees has been assigned a condition percentage from 0% to 100% (100% to 60% = “good”; 59% to 40% = “moderate”; 39% to 0% = “poor”) and is used to determine suitability. This measurement is a way to cumulatively measure the health, structure, location, size, species, and anticipated life span of the individual.

Good: The potential for the individual to contribute long-term to the site, having good health, structure, and the most suitable for preservation and retention.
• Trees #1, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

Moderate: These individuals contribute to the site to a lesser degree than the previous category, and will require frequent care throughout their life span. Retention and preservation may not be suitable depending on the needs of the project.

• Trees #2, 6, 9

Poor: Preservation and retention are not likely based on the individual’s declining health and/or structure. Any tree care measure employed with not likely have a significant effect. These trees are recommended for removal based on condition in addition to any project impacts.

• Trees #11, 15

Specific Construction Impacts

If any of the six (6) individuals that are considered Heritage Trees will be removed, they will require replacement pursuant to the City of San Mateo’s Heritage Tree Ordinance §13.52 with a 24”-box tree for each removal. Any species listed in §13.52.020 is acceptable; *Quercus agrifolia* is recommended for its low water usage.

The following guidelines must also be followed for all trees to be preserved:

• Tree Protective Fencing during the construction period is recommended around each tree well, planter box, or around the dripline if possible. The trunks of the trees to be preserved are to be wrapped with brightly colored snow fencing, which will provide a visual reminder to workers that the trees are protected.

• To help compensate for the root loss, it will be essential to irrigate all trees during the dry months (any month receiving less than 1 inch of rainfall) for a minimum of one (1) year. Irrigate a minimum of ten (10) gallons for each inch of trunk diameter every two (2) weeks. A soaker hose or a drip line is preferred for this purpose. This irrigation must be applied during the trees’ recovery period, which may be longer than the construction process.

• If any large roots (2 inches in diameter or larger) are severed, the stub end(s) of the root(s) must be cleanly cut using a sharp saw and sealed using a plastic bag tied on the end. Plastic bags must be removed at the time of backfill.
• Materials must not be stored, stockpiled, dumped, or buried inside the dripline of trees.

• Excavated soil must not be piled or dumped, even temporarily, inside the driplines of protected trees.

• Any pruning must be done by an arborist certified by the ISA (International Society of Arboriculture) and according to ISA, Western Chapter Standards, 1998.

• The irrigation must not be designed to strike the trunks of trees, because of potential high risk of disease infection.

• Trees #26 through 45 are outside of, or not in direct proximity to, the area of construction, and do not require tree protection.

Construction Guidelines

Trees can be damaged or killed by a wide variety of construction activities. Some injuries, such as broken branches or torn bark, can be easily avoided. However, the worst damage often remains unseen. Roots are one of the most vital parts of a tree. They are responsible for nutrient and water uptake, energy storage, and anchoring of the plant. Because they are so important, it is critical that you protect roots that lie in the path of construction.

Trees are never the same shape below ground as they are above, so it is difficult to predict the length or location of their roots. An easy rule to follow is that approximately ninety to ninety-five (90-95) percent of a tree's root system is in the top three (3) feet of soil, and more than half is in the top one (1) foot, which extends radially from the trunk to the dripline of the tree. The part of this root system in which construction damage should be avoided is called the Critical Root Zone (CRZ).

Any tree located within the footprint of the proposed structures will be removed prior to construction. In the event that construction will impact any other individuals located on this site, the contractor shall abide by the general construction recommendations listed in the following section of this report. The tree protection measures for establishing a Tree Protection Zone (TPZ) are as follows and is to be included as a detail on a full-size sheet of the construction plans. All work within the dripline or TPZ (whichever is greater) is to be done by hand in the presence of the Project Arborist or designee.

Preconstruction Contractor Meeting

Prior to ground break a preconstruction meeting shall be held with the Project Arborist, Project Superintendent and other parties associated with the project that may encounter a
subject tree during the course of the construction to discuss the guidelines included in this report.

Soil Cut or Fill within Root Zones

One of the most important guidelines to be followed when construction occurs near trees is: Do not disturb the ground surface within the CRZ of any tree proposed to be retained. Disturbing the ground includes heavy equipment, over-watering, trenching, excavating, or any other activity, including foot traffic, within the specified area. When adding new fill to any root zone, care should be taken to assure that it is no deeper than six (6) inches. This fill should not be compacted or placed within three (3) feet of any trunk. If compaction is necessary, sixty to seventy (60-70) percent should be the maximum pore space allowed in the soil. In addition, any change in the natural grade should provide drainage away from rather than towards the tree. It is important to remember that the removal of any soil within the drip line could do serious damage. If soil must be removed, no more than four (4) inches should be allowed. This soil removal work must be done by hand or “AirSpade” (see below). If roots two (2) inches or greater in diameter are encountered, root severance guidelines must be followed.

Root Excavation Guidelines

Ninety (90) percent of all roots are located in the top eighteen (18) inches of soil. Proper excavation of roots in this area is critical to a tree’s successful recovery. The top twenty-four (24) inches of soil should be removed with the assistance of an AirSpade and assisting hand tool, trenching at a pressure of four- to six-hundred (400 to 600) pounds per square inch.

AirSpade

The AirSpade is a handheld soil excavation tool connected to a large air-compressor. The high pressure stream of air is funneled through a small nozzle breaking dense soils apart into small particles. By using air to excavate soil, delicate roots, and hard surfaces are not damaged. An AirSpade will blow soil away from root systems with minimal to no damage.

Expectations of the AirSpade and Root Crown Excavation

Exploratory AirSpading should be conducted prior to the commencement of construction activities to explore the extent of the tree roots. This is done in order to mitigate the impacts of construction. The exploratory AirSpading and exposition of the root system is performed to evaluate the size, structure, and potential health of the root system. Next, it is important to keep the exposed roots wet. This keeps the roots from drying out and dying,
which dessication of the roots will damage the entire health of the tree. The roots should be cleanly cut with a handsaw, and only cut root that are less than two (2) inches in diameter. When possible, the root should be cut back to a lateral (side) root. As soon as severance occurs, cover or wrap the root end with a plastic bag secured with tape or rubber band; backfill as soon as possible. If unsure of the procedures mentioned above, have a professional arborist onsite.

1. Preparing the Proper Soil Moisture – irrigate the soil area where exploration is to occur one to two (1-2) days prior to the AirSpade work being done. This will soften the soil and expedite the process.

2. Clearing the Work Area - The work area around the tree will need to be prepared. Prior to the movement of soil, remove any grass, ivy, shrubs, or flowers from around the base of the tree. This work area is typically one to two (1-2) feet from the base of the tree. Salvage any plant material intended to keep as vegetation will not be replaced once removed.

3. Mitigating Noise - Due to the high pressure air being used and the compressor needed, the process can be quite noisy. However, care can be taken to keep the noise down.

4. Backfilling the Excavated Area - When excavating a root flare or root crown the void created can sometimes be quite deep. If the area cannot be left open then the site should be engineered to accommodate the situation. At times medium to large stones can be used to backfill the area insuring greater air circulation around the base.

Root Severance Guidelines

Any tree under stress before root severance may not survive this procedure. Consult the onsite Certified Arborist before damaging roots. The purpose of this procedure is to minimize the health impact caused by root severance. By following this procedure, recovery time and the impact on tree health can be reduced. This procedure is to be followed whenever damage to any root two (2) inches or greater in diameter occurs:

1. The root must be covered immediately with a board or burlap and kept moist.

2. Before backfilling, the damaged roots should be clean cut with a handsaw or chainsaw. When possible, the root should be cut back to a lateral (side) root. As soon as severance occurs, cover or wrap the root end with a moist plastic bag secured with tape or rubber band. Backfill as soon as possible.

Root Zone Irrigation Before and After Root Damage
Any tree subjected to the impacts of construction should be irrigated prior to construction activities, during construction, and after construction has ended. In addition, any tree which will have or has had damage to its roots should be irrigated. Three (3) weeks prior to excavation or grading place an adequate irrigation hose at the drip line. Water the CRZ one (1) time per week for six to eight (6-8) hours or as necessary to wet the soil to a depth of two (2) feet. If damage has already occurred, place the irrigation hose in an area where roots have not been disturbed and also place a hose over the area that was damaged. Continue this irrigation practice for one (1) month and up to eight (8) months, depending on the severity of the damage and the recommendation of the Project Arborist.

Mulch

Any tree subjected to the impacts of construction should be mulched prior to construction activities, during construction, and after construction has ended. Apply a layer of wood chips at least six (6) inches thick over areas that will be used for traffic or materials storage during construction. If these areas become part of the new landscape, the wood chips will prevent the soil from becoming too compacted and provides a layer of organic material. At no time does mulching constitute adequate protect of the roots for large equipment to enter the CRZ.

Tree Protection Fences

Trees are often killed, injured or stressed is a direct result of the construction process. A TPZ is to be installed by the following actions:

- **Tree Protection Fencing:** The fence shall enclose the entire area under the canopy dripline or TPZ (whichever is greater) of the tree(s) to be protected throughout the life of the construction project. In some parking areas, if fencing is located on paving or concrete that will not be demolished, then the posts may be supported by an appropriate grade level concrete base, if approved. For trees situated within a planting strip, the planting strip shall be enclosed with the required chain link protective fencing in order to keep the sidewalk and street open for public use. Trees situated in a tree well or sidewalk planter pit, shall be wrapped with two (2) inches of orange plastic fencing from the ground to the first branch and overlaid with two (2) inch thick wooden slats bound securely (slats shall not be allowed to dig into the bark). During installation of the plastic fencing, caution shall be used to avoid damaging any branches. Major scaffold limbs will also require Type III protection.

To protect trees, install a six (6) foot high chain-link fence with post driven into the ground every ten to twelve (10-12) feet. The fencing should be located at the TPZ perimeter and...
not disturbed for any reason. The Project Arborist is to determine the configuration of the tree protection fencing.

Warning Signage indicating, “Tree Protection Zone: Keep Out,” or similar wording at the direction of the Project Arborist, shall be placed in two (2) visible locations on opposite sides of the tree (see Figure 2 of Exhibit 1). All fencing and protection should be in place before any construction begins and left until all landscape grading and trenching is complete. Avoid placing of underground utilities within the drip line of any tree. When utilities are run through the root zone of a tree, horizontal coring should be used instead of trenching. If it is not possible to use horizontal coring, the onsite certified arborist should be contacted before trenching begins.

Recommended Services

Any tree subjected to the impacts of construction activities should be pruned prior to the commencement of construction. Pruning can be done during the tenure of construction so long as it is deemed necessary by the Project Arborist. All services recommended in this report should be done by a Certified Arborist or Certified Tree Worker in accordance with the ANSI-A300 standards. All pruning necessary to provide clearance during construction should be performed by a Certified Arborist or Tree Worker and not undertaken by construction personnel. Accidental damage to trees should receive immediate corrective attention. Pruning shall cease after construction has stopped and is to occur only as needed for proper maintenance.

Any tree subjected to the impacts of construction activities should be fertilized prior to the commencement of construction. Where deep root fertilization has been recommended, a solution of four (4) pounds of Doggett’s 32-7-7 per one hundred (100) gallons of water should be used. This should be injected at the rate of ten (10) gallons per inch of trunk diameter at one- to two-hundred (200-300) pounds of pressure. Unless otherwise stated, fertilization should take place between May and September. Mycorrhizal inoculum: Trees are to have roots inoculated with endo/ectomycorrhizal fungal inoculum. Fertilization shall occur prior to, during, and after construction under the direction of the Project Arborist.

Design Guidelines

- Avoid placement of fence anchors in close proximity to tree trunks.

- Do not install paving or build structures in close proximity to trees with invasive or surface oriented root systems (unless existing paving or building structures were present prior to construction).
• Where structure height will require removal of large branches, do not plan construction within tree drip line.

• Do not place chimney ventilation within the tree’s canopy area.

• Assure that roof drainage is directed away from trees.

• For trees to be installed, anticipate the tree’s height and spread at maturity. Do not place structures so as to limit the normal form of the tree as it matures.

• Contact the Project Arborist to review the landscape design before it is implemented.

• Do not install impervious materials such as roads and walkways within the CRZ.

• When designing walkways within the drip line, use pervious materials such as interlocking paving and geogrid matrix wherever possible.

• Make sure that the tree requirements are fully recognized during design, construction installation and maintenance of landscape.

Construction Guidelines

• Do not use tree trunks as a winch support in demolition or for moving and lifting large loads.

• Do not dump concrete residue, chemicals, solvents, etc., on site.

• Do not attempt the demolition of trees with grading equipment when trees that are to be preserved are in the vicinity. Trees uprooted by pushing or pulling may damage branches or root systems of adjacent trees. All trees and stumps should be removed by a qualified company.

• Grade and trench lines radial to trees rather than tangential. If roots are encountered while trenching, follow root severance guidelines.

• If soil compaction has occurred near or within the CRZ by operating of heavy equipment or other operations, aerate (fracture) soil as quickly as practical.

• If demolition of existing roads, structures, etc. is near any tree to be preserved, a small soft-rubber tire loader should be used. Any work within six (6) feet of any trunk should be performed by hand.
Maintenance Guidelines

- All recommended services should be performed before construction ends. Pruning shall cease after construction and only be performed as directed by a Certified Arborist for maintenance purposes.

- Continuance of irrigation for one to eight (1-8) months, or as directed by a Certified Arborist. Gradually reduce irrigation to avoid overwatering.

- Provide the new property owners with information they will require for proper maintenance of trees on the property.

Schedule and Coordination

Trees should be monitored by the Project Arborist during construction at the following intervals:

- Before construction begins, the Project Arborist is to use this preservation plan to implement tree protections with the assigned contractors for all work onsite.

- During the Pre-construction meeting.

- During the Rough Grading or Trenching.

- For each Monthly Tree Activity Report Inspection or the interval deemed necessary by the local authorities.

- Any Special Activity within any TPZ or CRZ.

- Any other time deemed necessary by the Project Arborist.
Concluding Remarks

This report is a guideline for the proper maintenance of tree during construction activities. The following activities need to occur, as noted above:

- Preconstruction: root exploration; root pruning; foliar pruning; mulch; irrigation; fertilization; tree protection measures.
- During construction: tree protection measures; mulch; irrigation; fertilization; and pruning as needed.
- Post-construction: mulch; irrigation; and yearly maintenance pruning as needed.

While trees vary in their tolerance to changed conditions, disruption in any form of the environment to which the trees have grown accustomed, may result in adverse reaction. No assurance can be offered that if all of the recommendations and precautionary measures are accepted and followed, the desired results will be achieved. Demolition and construction activity among and near trees is inherently contrary to tree welfare. The objective of these guidelines is to provide information useful in mitigating undesirable consequences resulting from uninformed or careless acts. If strict adherence to all recommendations is performed, we believe the trees will successfully survive construction of the project.
Assumptions and Limiting Conditions

While trees vary in their tolerance to changed conditions, disruption in any form of the environment to which the trees have grown accustomed may result in adverse reaction. Human activity among and near trees is inherently contrary to tree welfare and there are inherent risks associated. The objective of this report is to provide information useful in mitigating undesirable consequences resulting from failure of any part of a tree.

The following are limitations to this report:

- All information presented herein covers only the trees examined at the area of inspection, and reflects the condition observed of said tree at the time of inspection.
- Observations were performed visually without probing, dissecting, coring, or excavation, unless noted above, and in no way shall the observer be held responsible for any defects that could have only been discovered by performing said services in specific area(s) where a defect was located.
- No guarantee or warranty is made, expressed or implied, that defects of the trees inspected may not arise in the future.
- No assurance can be offered that if the recommendation and precautionary measure are accepted and followed, that the desired result may be attained.
- No responsibility is assumed for the methods used by any person or company executing the recommendations provided in this report.
- The information provided herein represents an opinion, and in no way is the reporting of a specified finding, conclusion, or value based on the retainer.
- This report is proprietary to Arborwell, and may not be reproduced in whole or part without written consent. This report has been prepared exclusively for use of the parties to which it has been submitted.
- Should any part of this report be altered, damaged, corrupted, or lost the entire evaluation shall be invalid.
Exhibit 1 – Figures and Tables

Figure 1: an aerial image depicting the project area (shaded red).
Figure 2: An example of the appropriate signage to use in conjunction with Tree Protection Fencing.
Figure 3: an image of Trees #1 through #4 located adjacent to E. 5th Avenue.
Figure 4: an image of Trees #5 through #8 located adjacent to E. 5th Avenue.
Figure 5: an image of Trees #9 through #12 located adjacent to E. 5th Avenue.
Figure 6: an image of Trees #13 through #16 located adjacent to E. 5th Avenue.
Figure 7: an image of Trees #17 through #20 located in the parking lot.
Figure 8: an image of Trees #21 and #22 located in the parking lot.
Figure 9: an image of Trees #23 through #25 located on San Mateo Drive.
Exhibit 2 - Tree Evaluation Schedule for 99-157 E. 5th Avenue, San Mateo, California

FORMULA FOR LU VALUE:

\[
\text{Ref. Value} = \frac{\text{Species Value}}{\text{Condition Value}} \times \text{Location Value} \times 0.35 \times \text{Caliper inches} + \text{Result}\]

Trees of 6" Caliper or Greater

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Location</th>
<th>Species Name</th>
<th>Common Name</th>
<th>Fate: Reserved/Removed</th>
<th>Species Value %</th>
<th>Condition Value %</th>
<th>Location Value %</th>
<th>0.35 Result</th>
<th>Caliper inches</th>
<th>Result +</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E. 5th Avenue</td>
<td>Pistacia chinensis</td>
<td>Chinese Pistache</td>
<td>Remove</td>
<td>100%</td>
<td>75%</td>
<td>50%</td>
<td>0.35</td>
<td>1.071</td>
<td>10.191083</td>
<td>Tree Street</td>
</tr>
<tr>
<td>2</td>
<td>E. 5th Avenue</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>50%</td>
<td>50%</td>
<td>0.35</td>
<td>0.714</td>
<td>8.9171975</td>
<td>Crown Deback</td>
</tr>
<tr>
<td>3</td>
<td>E. 5th Avenue</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>60%</td>
<td>50%</td>
<td>0.35</td>
<td>0.857</td>
<td>9.2356688</td>
<td>Same Crown Deback</td>
</tr>
<tr>
<td>4</td>
<td>E. 5th Avenue</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>75%</td>
<td>50%</td>
<td>0.35</td>
<td>1.071</td>
<td>5.7324841</td>
<td>Some Crown Deback</td>
</tr>
<tr>
<td>5</td>
<td>E. 5th Avenue</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>60%</td>
<td>50%</td>
<td>0.35</td>
<td>0.857</td>
<td>8.3694268</td>
<td>Overarching Branches</td>
</tr>
<tr>
<td>6</td>
<td>E. 5th Avenue</td>
<td>Ilex aquifolium</td>
<td>English Holly</td>
<td>Remove</td>
<td>80%</td>
<td>90%</td>
<td>50%</td>
<td>0.35</td>
<td>0.571</td>
<td>7.06369427</td>
<td>Multi-stemmed; Measurement taken at base; 7, 6, 5, and 4</td>
</tr>
<tr>
<td>7</td>
<td>E. 5th Avenue</td>
<td>Pistacia chinensis</td>
<td>Chinese Pistache</td>
<td>Remove</td>
<td>100%</td>
<td>75%</td>
<td>50%</td>
<td>0.35</td>
<td>1.071</td>
<td>5.5541401</td>
<td>Overcrowded; Stunted Growth</td>
</tr>
<tr>
<td>8</td>
<td>E. 5th Avenue</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>75%</td>
<td>50%</td>
<td>0.35</td>
<td>1.071</td>
<td>5.5541401</td>
<td>Overcrowded; Stunted Growth</td>
</tr>
<tr>
<td>9</td>
<td>E. 5th Avenue</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>50%</td>
<td>50%</td>
<td>0.35</td>
<td>0.714</td>
<td>8.9171975</td>
<td>Overcrowded; Stunted Growth</td>
</tr>
<tr>
<td>10</td>
<td>E. 5th Avenue</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>65%</td>
<td>75%</td>
<td>0.35</td>
<td>1.621</td>
<td>27.388535</td>
<td>Overcrowded; Stunted Growth</td>
</tr>
<tr>
<td>11</td>
<td>E. 5th Avenue</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>85%</td>
<td>75%</td>
<td>0.35</td>
<td>0.429</td>
<td>4.4565967</td>
<td>Overcrowded; Stunted Growth</td>
</tr>
<tr>
<td>12</td>
<td>E. 5th Avenue</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>30%</td>
<td>50%</td>
<td>0.35</td>
<td>0.429</td>
<td>4.4565967</td>
<td>Overcrowded; Stunted Growth</td>
</tr>
<tr>
<td>13</td>
<td>E. 5th Avenue</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>75%</td>
<td>50%</td>
<td>0.35</td>
<td>1.071</td>
<td>5.5541401</td>
<td>Overcrowded; Stunted Growth</td>
</tr>
<tr>
<td>14</td>
<td>E. 5th Avenue</td>
<td>Cinnamomum camphora</td>
<td>Camphor</td>
<td>Remove</td>
<td>80%</td>
<td>65%</td>
<td>75%</td>
<td>0.35</td>
<td>1.471</td>
<td>16.509554</td>
<td>Minor Overcrowding</td>
</tr>
<tr>
<td>15</td>
<td>S. San Mateo Drive</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>30%</td>
<td>50%</td>
<td>0.35</td>
<td>0.429</td>
<td>3.1647134</td>
<td>Overcrowded; Stunted Growth</td>
</tr>
<tr>
<td>16</td>
<td>S. San Mateo Drive</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>60%</td>
<td>50%</td>
<td>0.35</td>
<td>0.857</td>
<td>4.4565967</td>
<td>Overcrowded; Stunted Growth</td>
</tr>
<tr>
<td>17</td>
<td>S. San Mateo Drive</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>100%</td>
<td>60%</td>
<td>50%</td>
<td>0.35</td>
<td>0.857</td>
<td>4.4565967</td>
<td>Overcrowded; Stunted Growth</td>
</tr>
<tr>
<td>18</td>
<td>Parking Lot</td>
<td>Cinnamomum camphora</td>
<td>Camphor</td>
<td>Remove</td>
<td>80%</td>
<td>65%</td>
<td>75%</td>
<td>0.35</td>
<td>1.174</td>
<td>18.152866</td>
<td>Minor Overcrowding</td>
</tr>
<tr>
<td>19</td>
<td>Parking Lot</td>
<td>Lophostemon confertus</td>
<td>Brisbane Box</td>
<td>Remove</td>
<td>80%</td>
<td>70%</td>
<td>75%</td>
<td>0.35</td>
<td>1.200</td>
<td>16.509554</td>
<td>Major Overcrowding; Crown Deback</td>
</tr>
<tr>
<td>20</td>
<td>Parking Lot</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>80%</td>
<td>90%</td>
<td>75%</td>
<td>0.35</td>
<td>1.829</td>
<td>22.929936</td>
<td>Major Overcrowding; Crown Deback</td>
</tr>
<tr>
<td>21</td>
<td>Parking Lot</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>80%</td>
<td>90%</td>
<td>75%</td>
<td>0.35</td>
<td>1.829</td>
<td>22.929936</td>
<td>Major Overcrowding; Crown Deback</td>
</tr>
<tr>
<td>22</td>
<td>Parking Lot</td>
<td>Quercus agrifolia</td>
<td>Coast Live Oak</td>
<td>Remove</td>
<td>80%</td>
<td>90%</td>
<td>75%</td>
<td>0.35</td>
<td>1.829</td>
<td>22.929936</td>
<td>Major Overcrowding; Crown Deback</td>
</tr>
<tr>
<td>23</td>
<td>S. San Mateo Drive</td>
<td>Ulmus parvifolia</td>
<td>Chinese Elm</td>
<td>Preserve</td>
<td>20%</td>
<td>75%</td>
<td>50%</td>
<td>0.35</td>
<td>0.214</td>
<td>14.649682</td>
<td>Street Tree</td>
</tr>
<tr>
<td>24</td>
<td>S. San Mateo Drive</td>
<td>Ulmus parvifolia</td>
<td>Chinese Elm</td>
<td>Preserve</td>
<td>20%</td>
<td>75%</td>
<td>50%</td>
<td>0.35</td>
<td>0.214</td>
<td>14.649682</td>
<td>Street Tree</td>
</tr>
<tr>
<td>25</td>
<td>S. San Mateo Drive</td>
<td>Ulmus parvifolia</td>
<td>Chinese Elm</td>
<td>Preserve</td>
<td>20%</td>
<td>75%</td>
<td>50%</td>
<td>0.35</td>
<td>0.214</td>
<td>14.649682</td>
<td>Street Tree</td>
</tr>
</tbody>
</table>

Note: LU Value = LU Value for Reference Tree + LU Value for Removed Tree + LU Value for Overcrowded Tree + LU Value for Stunted Growth Tree + LU Value for Minor Overcrowding Tree + LU Value for Crown Deback Tree + LU Value for Street Tree + LU Value for Young Tree + LU Value for Staked Tree.
Exhibit 3 - Tree Inventory Map (See Exhibit 2 for Specific Details)
99-157 E. 5th Avenue
San Mateo, CA

Common Name
- Brisbane Box
- Camphor
- Chinese Elm
- Chinese Pistache
- Coast Live Oak
- English Holly
- European Hackberry
- Honey Locust